A Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming

نویسنده

  • Takashi Tsuchiya
چکیده

Second-order cone programming (SOCP) is the problem of minimizing linear objective function over cross-section of second-order cones and an a ne space. Recently this problem gets more attention because of its various important applications including quadratically constrained convex quadratic programming. In this paper we deal with a primal-dual path-following algorithm for SOCP to show many of the ideas developed for primal-dual algorithms for LP and SDP carry over to this problem. We de ne neighborhoods of the central trajectory in terms of the \eigenvalues" of the second-order cone, and develop an analogue of HRVW/KSH/M direction, and establish O( p n log " 1 ), O(n log " 1 ) and O(n 3 log " 1 ) iteration-complexity bounds for short-step, semilong-step and long-step path-following algorithms, respectively, to reduce the duality gap by a factor of ". keywords: second-order cone, interior-point methods, polynomial complexity, primal-dual path-following methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems in which we minimize linear function over the intersection of an affine linear manifold with the Cartesian product of circular cones. It has very recently been discovered that, unlike what has previously been believed, circular programming is a special case of symmetric programming, where it lies between second-order ...

متن کامل

Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions

In this paper we study primal-dual path-following algorithms for the second-order cone programming (SOCP) based on a family of directions that is a natural extension of the Monteiro-Zhang (MZ) family for semidefinite programming. We show that the polynomial iteration-complexity bounds of two well-known algorithms for linear programming, namely the short-step path-following algorithm of Kojima e...

متن کامل

A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-order Cone Programming

This paper is a continuation of our previous paper in which we studied a polynomial primaldual path-following algorithm for SOCP using an analogue of the HRVW/KSH/M direction for SDP. We develop an improved and simpli ed complexity analysis which can be also applied to the algorithm using the NT direction. Speci cally, we show that the long-step algorithm using the NT direction has O(n log " 1 ...

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997